New way to introduce exhibitors

The article proposes a new, very unusual way to determine the exponent and on the basis of this definition its main properties are derived.



Every positive number aset in correspondence E_a = \ left \ {x: x = \ left (1 + a_1 \ right) \ left (1 + a_2 \ right) \ ldots \ left (1 + a_k \ right) \ right. where a1,a2, ldots,ak>0and  left.a1+a2+ ldots+ak=a right}.

Lemma 1 . Of 0<a<bit follows that for each element x inEathere is an item y inEbsuch that y>x.

Will write A leqc, if a cupper bound of the set A. Similarly, we will write A geqc, if a c- lower bound of the set A.

Lemma 2. If a1,a2, ldots,ak>0then  left(1+a1 right) left(1+a2 right) ldots left(1+ak right) geq1+a1+a2+ text...+ak.

Evidence


We proceed by induction.

For k=1The statement is obvious: 1+a1 geq1+a1.

Let be  left(1+a1 right) ldots left(1+ai right) geq1+a1+ ldots+aifor 1<i<k.

Then  left(1+a1 right) ldots left(1+ai right) left(1+ai+1 right) geq1+a1+ ldots+ai+ left(1+a1+ ldots+ai right)ai+1 geq

 geq1+a1+ ldots+ai+ai+1.

Lemma 2 is proved.

In the following, we show that each set Ealimited. Lemma 2 implies that

 supEa geqa(one)

Lemma 3. If 0<a leq frac12and a1, ldots,ak>0, a1+a2+ ldots+ak=athen  left(1+a1 right) ldots left(1+ai right) leq1+(1+2a)a1+(1+2a)a2+ ldots+(1+2a)ai, i=1,2, ldots,k.

Evidence


Indeed, by induction 1+a1 leq1+(1+2a)a1.

Let it be proved that  left(1+a1 right) ldots left(1+ai right) leq1+(1+2a)a1+ ldots+(1+2a)ai.

Then  left(1+a1 right) ldots left(1+ai right) left(1+ai+1 right) leq1+(1+2a)a1+ ldots+(1+2a)ai+

+ left(1+(1+2a)a1+ ldots+(1+2a)ai right)ai+1 leq

 leq1+(1+2a)a1+ ldots+(1+2a)ai+ left(1+2a1+ ldots+2ai right)ai+1 leq

 leq1+(1+2a)a1+ ldots+(1+2a)ai+(1+2a)ai+1.

Lemma 3 is proved.

Lemma 3 implies

Lemma 4. If 0<a leq frac12and a1, ldots,ak>0, a1+a2+ ldots+ak=athen  left(1+a1 right) ldots left(1+ak right) leq1+a+2a2.

Lemmas 3 and 4 imply an important inequality: if 0<a leq frac12then

1+a leqEa leq1+a+2a2(2)

In particular, if a leq frac12then Ea leq2. Note that inequality 1+a leqEatrue to all a>0.

Lemma 5. For any natural nfair inequality En leq22n.

Evidence


Let be a1, ldots,ak>0, a1+ ldots+ak=n.

Evaluate the work  left(1+a1 right) ldots left(1+ak right). Lemma 2 implies that

 left(1+ fracai2n right)2n geq1+aifor i=1, ldots,k.

therefore  left(1+a1 right) ldots left(1+ak right) leq left(1+ fraca12n right)2n ldots left(1+ fracak2n right)2n= left( left(1+ fraca12n right) ldots left(1+ fracak2n right) right)2n.

Because  fraca12n+ ldots+ fracak2n= frac12, then applying Lemma 4, we obtain  left(1+ fraca12n right) ldots left(1+ fracak2n right) leq1+ frac12+2 cdot frac14=2i.e.  left( left(1+ fraca12n right) ldots left(1+ fracak2n right) right)2n leq22n.

Thus, Lemma 5 is proved.

Lemma 6. Let A subsetBtwo non-empty bounded subsets of the set of real numbers R. If for any b inBthere is an item a inAsuch that a geqbthen  supA= supB.

Evidence


It's clear that  supA leq supB. Assuming that  supA< supBthere is  varepsilon>0such that  textsupA< textsupB varepsilon. So for any a inAtrue inequality a< supB varepsilon. But in Bthere is an item b> supB varepsilon. So each a inAless of this b, which contradicts the condition of the lemma, and the proof is complete.

Function definition f(exhibitors)


We see (see Lemma 1 and Lemma 5) that for any a>0lots of Ealimited. This allows you to define the function f:R+ rightarrowRby putting f(a)= supEaand f(0)=1. For any non-empty subsets A, Bsets Rreal numbers set A \ cdot B = \ {x: x = a \ cdot b where a inA,b inB}.

Lemma 7. If A geq0, B geq0non-empty bounded subsets Rthen  sup(A cdotB)= supA cdot supB.

Evidence


Because A cdotB leq supA cdot supBthen  sup(A cdotB) leq supA cdot supB. If a  sup(A cdotB)< supA cdot supBthere is  varepsilon>0such that  sup(A cdotB)< textsupA cdot textsupB varepsilon. Therefore, for any a inAand b inBright

ab< textsupA( textsupB varepsilon)(3)

Choose a sequence \ left \ {a_n \ right \} elements of the set Aconverging to  supAand sequence \ left \ {b_n \ right \} elements of the set Bconverging to  supB. But then anbn rightarrow supA cdot supBthat contradicts (3).

Lemma 7 is proved.

Lemma 8. For a,b>0fair equality f(a+b)=f(a) cdotf(b).

Evidence


Consider the sets Ea, Eband Ea+b. Turning on Ea cdotEb subsetEa+bobviously. Let us prove that for any z inEa+bthere are x inEaand y inEbsuch that xy geqz. Indeed let z= left(1+a1 right) left(1+a2 right) ldots left(1+ak right)where a1, ldots,ak>0, a1+ ldots+ak=a+b. Consider sets of positive numbers. \ left \ {\ frac {a} {a + b} a_1, \ ldots, \ frac {a} {a + b} a_k \ right \}, \ left \ {\ frac {b} {a + b} a_1, \ ldots, \ frac {b} {a + b} a_k \ right \} .

It's clear that  fracaa+ba1+ fracaa+ba2+ ldots+ fracaa+bak=a,  fracba+ba1+ fracba+ba2+ ldots+ fracba+bak=b.

Set x= left(1+ fracaa+ba1 right) left(1+ fracaa+ba2 right) ldots left(1+ fracaa+bak right), y= left(1+ fracba+ba1 right) left(1+ fracba+ba2 right) ldots left(1+ fracba+bak right).

It's clear that x inEa, y inEband x cdoty= left(1+ fracaa+ba1 right) left(1+ fracba+ba1 right) left(1+ fracaa+ba2 right) left(1+ fracba+ba2 right) ldots

 ldots left(1+ fracaa+bak right) left(1+ fracba+bak right) geq left(1+a1 right) left(1+a2 right) ldots left(1+ak right),

which completes the proof of Lemma 8.

so  sup left(Ea cdotEb right)= supEa+b. But Lemma 7 implies that  sup left(Ea cdotEb right)= supEa cdot supEb.

We have built a valid function. fdefined on a set of positive numbers such that f(a+b)=f(a) cdotf(b). We finish it on the whole numerical line, putting f(0)=1and f(a)=f1(a)for any negative number a.

So function fdefined on the whole number line.

Lemma 9. If a+b=cthen f(a) cdotf(b)=f(c).

Evidence


If one of the numbers a, b, cequally 0then for them the statement of the lemma is true.

For the case when a,b,c>0Lemma follows from Lemma 8.

Further, if the lemma is true for numbers a, b, cthen it is true for numbers a, b, c. Indeed, since f(a) cdotf(b)=f(c)then  frac1f(a) cdot frac1f(b)= frac1f(c)i.e. f(a) cdotf(b)=f(c). So, it suffices to prove the lemma for the case c>0. But then either a>0, b>0either a>0, b<0either a<0, b>0. Happening a>0, b>0already disassembled. For definiteness, we set a>0, b<0. So, a+b=c, Consequently a=c+(b)where a, cand b>0. So f(a)=f(c) cdotf(b)or f(a)= fracf(c)f(b)i.e. f(a) cdotf(b)=f(c).

Lemma 9 is proved.

About function f


We built a function fdefined on a set of real numbers such that for any x,y inRright:

f(x)>0, f(x+y)=f(x) cdotf(y)(four)

For a>0of (2)follows

f(a) geq1+a(five)

If 0<a leq frac12then from (2)will get

f(a) leq1+a+2a2(6)

Note that because 0<a leq frac12then

a+2a2=a(1+2a) leq2a(7)

Finally out (5), (6), (7)will get

a leqf(a)1 leqa+2a2 leq2a(eight)

It's clear that

f(y)f(x)=f(x+(yx))f(x)=f(x)f(yx)f(x)=f(x)(f(yx)1).

So, it is established that

f(y)f(x)=f(x)(f(yx)1)(9)

Estimate the value of f(yx)1. Putting in inequality (8)a=yxget for x, ysuch that x<yand yx leq frac12:

yx leqf(yx)1 leq(yx)+2(yx)2 leq2(yx)(ten)

Using (9)from (10)we will receive:

f(x)(yx) leqf(y)f(x) leqf(x) left((yx)+2(yx)2 right) leq2f(x)(yx)(eleven)

T. to. f(x)>0, (yx)>0then from y>xfollows that f(y)>f(x)i.e. fincreases by R. Further 0<f(y)f(x) leq2f(x)(yx)that's why for z>y>xwill get

|f(y)f(x)| leq2f(z)(yx)(12)

Of (12)it follows that on the set ( infty;z]function funiformly continuous. So fcontinuous everywhere on R.

Now we estimate the value of the derivative of the function fat an arbitrary point x inR.

Let be xn<ynand xn rightarrowx, yn rightarrowxat n rightarrow infty. Then

 fracf left(xn right) left(ynxn right)ynxn leq fracf left(yn right)f left(xn right)ynxn leq fracf left(xn right) left(ynxn+2 left(ynxn right)2 right)ynxn,

i.e. f left(xn right) leq fracf left(yn right)f left(xn right)ynxn leqf left(xn right) left(1+2 left(ynxn right) right).

Because f left(xn right) rightarrowf(x)at n rightarrow inftyand f left(xn right) left(1+2 left(ynxn right) right) rightarrowf(x)at n rightarrow inftythen

 fracf left(yn right)f left(xn right)ynxn rightarrowf(x).

It means that feverywhere differentiable on Rand f(x)=f(x).


Slobodnik Semen Grigorievich ,
content developer for the application "Tutor: Mathematics" (see the article on Habré ), Ph.D. in Physics and Mathematics, teacher of school mathematics 179 Moscow

Source: https://habr.com/ru/post/416863/


All Articles