How AI learns to generate cat images



How AI can learn to generate pictures of cats .

Published in 2014, the research work Generative Adversarial Nets (GAN) was a breakthrough in the field of generative models. Lead researcher Yann Lekun called adversarial nets "the best idea in machine learning over the past twenty years." Today, thanks to this architecture, we can create an AI that generates realistic images of cats. Cool!


DCGAN during training

All working code lies in the Github repository . It will be useful to you if you have any experience of programming in Python, deep learning, working with Tensorflow and convolutional neural networks.

And if you are new to deep learning, I recommend to get acquainted with the excellent series of articles Machine Learning is Fun!

What is DCGAN?


Convolutional generative adversarial deep learning networks (Deep Convolutional Generative Adverserial Networks, DCGAN) are a deep learning architecture that generates data similar to data from a training set.

This model replaces the fully connected layers of the generative adversary network with convolutional layers. To understand how DCGAN works, let's use the metaphor of confrontation between an art expert and a forger.

The forger (“generator”) is trying to create a fake Van Gogh painting and pass it off as a real one.



The art historian ("discriminator") tries to catch the forger using his knowledge of the real Van Gogh canvases.



Over time, the art historian defines fakes better and better, and the falsifier makes them more and more perfect.


As you can see, DCGANs are made up of two separate deep learning neural networks competing with each other.



DCGAN scheme.


Let's create a DCGAN!


Now we are ready to create our own AI.

In this part we will focus on the main components of our model. If you want to see all the code, go here .

Input data


Create stubs for the input: inputs_real for the discriminator and inputs_z for the generator. Please note that we will have two learning rates (learning rates), separately for the generator and the discriminator.

DCGANs are very sensitive to hyperparameters, so it is very important to fine-tune them.
def model_inputs(real_dim, z_dim):

 """ Create the model inputs :param real_dim: tuple containing width, height and channels :param z_dim: The dimension of Z :return: Tuple of (tensor of real input images, tensor of z data, learning rate G, learning rate D) """ # inputs_real for Discriminator inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='inputs_real') # inputs_z for Generator inputs_z = tf.placeholder(tf.float32, (None, z_dim), name="input_z") # Two different learning rate : one for the generator, one for the discriminator learning_rate_G = tf.placeholder(tf.float32, name="learning_rate_G") learning_rate_D = tf.placeholder(tf.float32, name="learning_rate_D") return inputs_real, inputs_z, learning_rate_G, learning_rate_D 

Discriminator and generator


We use tf.variable_scope for two reasons.

First, to make sure that the names of all variables begin with generator / discriminator. Later it will help us in learning two neural networks.
Secondly, we will reuse these networks with different input data:




Let's create a discriminator. Remember that as input it takes a real or fake image and returns 0 or 1 in response.

A few notes:


 def discriminator(x, is_reuse=False, alpha = 0.2): ''' Build the discriminator network. Arguments --------- x : Input tensor for the discriminator n_units: Number of units in hidden layer reuse : Reuse the variables with tf.variable_scope alpha : leak parameter for leaky ReLU Returns ------- out, logits: ''' with tf.variable_scope("discriminator", reuse = is_reuse): # Input layer 128*128*3 --> 64x64x64 # Conv --> BatchNorm --> LeakyReLU conv1 = tf.layers.conv2d(inputs = x, filters = 64, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name='conv1') batch_norm1 = tf.layers.batch_normalization(conv1, training = True, epsilon = 1e-5, name = 'batch_norm1') conv1_out = tf.nn.leaky_relu(batch_norm1, alpha=alpha, name="conv1_out") # 64x64x64--> 32x32x128 # Conv --> BatchNorm --> LeakyReLU conv2 = tf.layers.conv2d(inputs = conv1_out, filters = 128, kernel_size = [5, 5], strides = [2, 2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name='conv2') batch_norm2 = tf.layers.batch_normalization(conv2, training = True, epsilon = 1e-5, name = 'batch_norm2') conv2_out = tf.nn.leaky_relu(batch_norm2, alpha=alpha, name="conv2_out") # 32x32x128 --> 16x16x256 # Conv --> BatchNorm --> LeakyReLU conv3 = tf.layers.conv2d(inputs = conv2_out, filters = 256, kernel_size = [5, 5], strides = [2, 2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name='conv3') batch_norm3 = tf.layers.batch_normalization(conv3, training = True, epsilon = 1e-5, name = 'batch_norm3') conv3_out = tf.nn.leaky_relu(batch_norm3, alpha=alpha, name="conv3_out") # 16x16x256 --> 16x16x512 # Conv --> BatchNorm --> LeakyReLU conv4 = tf.layers.conv2d(inputs = conv3_out, filters = 512, kernel_size = [5, 5], strides = [1, 1], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name='conv4') batch_norm4 = tf.layers.batch_normalization(conv4, training = True, epsilon = 1e-5, name = 'batch_norm4') conv4_out = tf.nn.leaky_relu(batch_norm4, alpha=alpha, name="conv4_out") # 16x16x512 --> 8x8x1024 # Conv --> BatchNorm --> LeakyReLU conv5 = tf.layers.conv2d(inputs = conv4_out, filters = 1024, kernel_size = [5, 5], strides = [2, 2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name='conv5') batch_norm5 = tf.layers.batch_normalization(conv5, training = True, epsilon = 1e-5, name = 'batch_norm5') conv5_out = tf.nn.leaky_relu(batch_norm5, alpha=alpha, name="conv5_out") # Flatten it flatten = tf.reshape(conv5_out, (-1, 8*8*1024)) # Logits logits = tf.layers.dense(inputs = flatten, units = 1, activation = None) out = tf.sigmoid(logits) return out, logits 



We created a generator. Remember that it takes as its input the noise vector (z) and, thanks to the transposed convolution layers, creates a fake image.

On each layer we reduce the filter size by half, and also double the size of the image.

Best of all, the generator works when using tanh as an output activation function.

 def generator(z, output_channel_dim, is_train=True): ''' Build the generator network. Arguments --------- z : Input tensor for the generator output_channel_dim : Shape of the generator output n_units : Number of units in hidden layer reuse : Reuse the variables with tf.variable_scope alpha : leak parameter for leaky ReLU Returns ------- out: ''' with tf.variable_scope("generator", reuse= not is_train): # First FC layer --> 8x8x1024 fc1 = tf.layers.dense(z, 8*8*1024) # Reshape it fc1 = tf.reshape(fc1, (-1, 8, 8, 1024)) # Leaky ReLU fc1 = tf.nn.leaky_relu(fc1, alpha=alpha) # Transposed conv 1 --> BatchNorm --> LeakyReLU # 8x8x1024 --> 16x16x512 trans_conv1 = tf.layers.conv2d_transpose(inputs = fc1, filters = 512, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="trans_conv1") batch_trans_conv1 = tf.layers.batch_normalization(inputs = trans_conv1, training=is_train, epsilon=1e-5, name="batch_trans_conv1") trans_conv1_out = tf.nn.leaky_relu(batch_trans_conv1, alpha=alpha, name="trans_conv1_out") # Transposed conv 2 --> BatchNorm --> LeakyReLU # 16x16x512 --> 32x32x256 trans_conv2 = tf.layers.conv2d_transpose(inputs = trans_conv1_out, filters = 256, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="trans_conv2") batch_trans_conv2 = tf.layers.batch_normalization(inputs = trans_conv2, training=is_train, epsilon=1e-5, name="batch_trans_conv2") trans_conv2_out = tf.nn.leaky_relu(batch_trans_conv2, alpha=alpha, name="trans_conv2_out") # Transposed conv 3 --> BatchNorm --> LeakyReLU # 32x32x256 --> 64x64x128 trans_conv3 = tf.layers.conv2d_transpose(inputs = trans_conv2_out, filters = 128, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="trans_conv3") batch_trans_conv3 = tf.layers.batch_normalization(inputs = trans_conv3, training=is_train, epsilon=1e-5, name="batch_trans_conv3") trans_conv3_out = tf.nn.leaky_relu(batch_trans_conv3, alpha=alpha, name="trans_conv3_out") # Transposed conv 4 --> BatchNorm --> LeakyReLU # 64x64x128 --> 128x128x64 trans_conv4 = tf.layers.conv2d_transpose(inputs = trans_conv3_out, filters = 64, kernel_size = [5,5], strides = [2,2], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="trans_conv4") batch_trans_conv4 = tf.layers.batch_normalization(inputs = trans_conv4, training=is_train, epsilon=1e-5, name="batch_trans_conv4") trans_conv4_out = tf.nn.leaky_relu(batch_trans_conv4, alpha=alpha, name="trans_conv4_out") # Transposed conv 5 --> tanh # 128x128x64 --> 128x128x3 logits = tf.layers.conv2d_transpose(inputs = trans_conv4_out, filters = 3, kernel_size = [5,5], strides = [1,1], padding = "SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="logits") out = tf.tanh(logits, name="out") return out 

Losses in the discriminator and generator


Since we are simultaneously training the generator and the discriminator, we need to calculate the losses for both neural networks. The discriminator should produce 1 when it “considers” the image as real, and 0 if it is false. In accordance with this and need to adjust the loss. The loss of the discriminator is calculated as the sum of the losses for the real and fake image:

d_loss = d_loss_real + d_loss_fake

where d_loss_real is a loss when the discriminator considers the image to be false, and in fact it is real. It is calculated as:


d_loss_fake is a loss when the discriminator considers an image as real, but in fact it is false.


For generator loss, d_logits_fake from the discriminator is used. This time, all labels are 1, because the generator wants to deceive the discriminator.

 def model_loss(input_real, input_z, output_channel_dim, alpha): """ Get the loss for the discriminator and generator :param input_real: Images from the real dataset :param input_z: Z input :param out_channel_dim: The number of channels in the output image :return: A tuple of (discriminator loss, generator loss) """ # Generator network here g_model = generator(input_z, output_channel_dim) # g_model is the generator output # Discriminator network here d_model_real, d_logits_real = discriminator(input_real, alpha=alpha) d_model_fake, d_logits_fake = discriminator(g_model,is_reuse=True, alpha=alpha) # Calculate losses d_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real))) d_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake))) d_loss = d_loss_real + d_loss_fake g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake))) return d_loss, g_loss 

Optimizers


After calculating the losses, the generator and the discriminator must be individually updated. To do this, using tf.trainable_variables() we will create a list of all the variables defined in our graph.

 def model_optimizers(d_loss, g_loss, lr_D, lr_G, beta1): """ Get optimization operations :param d_loss: Discriminator loss Tensor :param g_loss: Generator loss Tensor :param learning_rate: Learning Rate Placeholder :param beta1: The exponential decay rate for the 1st moment in the optimizer :return: A tuple of (discriminator training operation, generator training operation) """ # Get the trainable_variables, split into G and D parts t_vars = tf.trainable_variables() g_vars = [var for var in t_vars if var.name.startswith("generator")] d_vars = [var for var in t_vars if var.name.startswith("discriminator")] update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # Generator update gen_updates = [op for op in update_ops if op.name.startswith('generator')] # Optimizers with tf.control_dependencies(gen_updates): d_train_opt = tf.train.AdamOptimizer(learning_rate=lr_D, beta1=beta1).minimize(d_loss, var_list=d_vars) g_train_opt = tf.train.AdamOptimizer(learning_rate=lr_G, beta1=beta1).minimize(g_loss, var_list=g_vars) return d_train_opt, g_train_opt 

Training


Now we implement the learning function. The idea is quite simple:


 def train(epoch_count, batch_size, z_dim, learning_rate_D, learning_rate_G, beta1, get_batches, data_shape, data_image_mode, alpha): """ Train the GAN :param epoch_count: Number of epochs :param batch_size: Batch Size :param z_dim: Z dimension :param learning_rate: Learning Rate :param beta1: The exponential decay rate for the 1st moment in the optimizer :param get_batches: Function to get batches :param data_shape: Shape of the data :param data_image_mode: The image mode to use for images ("RGB" or "L") """ # Create our input placeholders input_images, input_z, lr_G, lr_D = model_inputs(data_shape[1:], z_dim) # Losses d_loss, g_loss = model_loss(input_images, input_z, data_shape[3], alpha) # Optimizers d_opt, g_opt = model_optimizers(d_loss, g_loss, lr_D, lr_G, beta1) i = 0 version = "firstTrain" with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Saver saver = tf.train.Saver() num_epoch = 0 if from_checkpoint == True: saver.restore(sess, "./models/model.ckpt") show_generator_output(sess, 4, input_z, data_shape[3], data_image_mode, image_path, True, False) else: for epoch_i in range(epoch_count): num_epoch += 1 if num_epoch % 5 == 0: # Save model every 5 epochs #if not os.path.exists("models/" + version): # os.makedirs("models/" + version) save_path = saver.save(sess, "./models/model.ckpt") print("Model saved") for batch_images in get_batches(batch_size): # Random noise batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim)) i += 1 # Run optimizers _ = sess.run(d_opt, feed_dict={input_images: batch_images, input_z: batch_z, lr_D: learning_rate_D}) _ = sess.run(g_opt, feed_dict={input_images: batch_images, input_z: batch_z, lr_G: learning_rate_G}) if i % 10 == 0: train_loss_d = d_loss.eval({input_z: batch_z, input_images: batch_images}) train_loss_g = g_loss.eval({input_z: batch_z}) # Save it image_name = str(i) + ".jpg" image_path = "./images/" + image_name show_generator_output(sess, 4, input_z, data_shape[3], data_image_mode, image_path, True, False) # Print every 5 epochs (for stability overwize the jupyter notebook will bug) if i % 1500 == 0: image_name = str(i) + ".jpg" image_path = "./images/" + image_name print("Epoch {}/{}...".format(epoch_i+1, epochs), "Discriminator Loss: {:.4f}...".format(train_loss_d), "Generator Loss: {:.4f}".format(train_loss_g)) show_generator_output(sess, 4, input_z, data_shape[3], data_image_mode, image_path, False, True) return losses, samples 

How to start


All this can be run directly on your computer, if you are ready to wait for 10 years. So it is better to use cloud-based GPU-services like AWS or FloydHub. Personally, I trained this DCGAN for 20 hours on Microsoft Azure and their Deep Learning Virtual Machine . I have no business relationship with Azure, I just like their customer service.

If you have any difficulties running on a virtual machine, refer to this wonderful article .

If you improve the model, feel free to make a pull request.

Source: https://habr.com/ru/post/416129/


All Articles